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Preface 

This study investigated the effects of trailing edge modifications 

on the lift-to-drag ratio of a cambered,  elliptical,   circulation con- 

trolled airfoil.    It is hoped that the results will be of value in the 

optimization of such high lift airfoils. 
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my advisor,   Professor Harold C.   Larsen,  and Mr.   James Snyder 
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would like to express my appreciation to Mr.   Millard Wolfe and the 

AFIT workshop staff for their work on the airfoil modifications. 
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Abstract 

Wind tunnel tests were conducted to determine the effects of 

trailing edge modifications on the lift-to-drag ratio of a circulation 

controlled airfoil.    The model was a 20 percent thick,  five percent 

cambered,   elliptical airfoil.    The airfoil was modified in aft contour, 

blowing slot position,   and blowing angle.    A 1.5 inch splitter plate 

was mounted at the 99 perce: t chord for all tests.    The tests were 

5 
run 9t a Reynolds Number,   based on model chord,  of 7.41 x 10  , 

while the angle of attack and blowing rate were varied during each 

test sequence. 

It was found that the modifications caused increases in the sec- 

tion lift coefficient and decreases in the section total drag coeffi- 

cients as compared to the original airfoil.    Due to these results,  the 

lift-to-drag ratio for airfoils using modifications were higher than 

the original airfoil.    A comparison of the results for these modified 

airfoils revealed that there were no drastic differences due to the 

modifications.    This indicated that the changes made provided for 

little variation in results,  and that such changes needed to be of 

greater magnitude. 
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A WIND TUNNEL STUDY OF THE EFFECTS OF 

TRAILING EDGE MODIFICATIONS ON THE 

LIFT-DRAG RATIO OF A CIRCULATION 

CONTROLLED AIRFOIL 

I.    Introduction 

In recent years,  there has been renewed interest in the area of 

low-speed,  high-lift flight.    This has been derived through the need 

for short take-off and landing aircraft.    This concept has many appli- 

cations.    They range from the missions of reconnaissance aircraft to 

those of low-speed,  high-lift transports. 

One method for obtaining high lift at low speeds is through 

circulation control.    Circulation control on an airfoil is a process of 

delaying flow separation through the use of a jet of air.    A blowing 

slot placed near the trailing edge of the airfoil acts to re-energize 

the boundary layer and move the front and rear stagnation points to 

the lower surface of the airfoil.    This movement of the stagnation 

points results in an increase in the section lift coefficient, C^,  and a 

decrease in the section profile drag coefficient,  Cj  . 

Previous Studies 

Through the use of an uncambered elliptical airfoil, Kind (Ref 3) 

obtained section lift coefficients of 3. 2.    Following this,  the studies 

1 
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of Williams (Ref 7), Walters (Ref 6),   and Englar (Ref 2) produced 

even higher lift coefficients. 

Stevenson (Ref 5),   in following a recommendation by Kind, 

investigated the feasibility of using a splitter plate to obtain greater 

«lift to drag ratios (1/d) through a reduction in mixing losses. 

Stevenson used a 20 percent thick,  five percent cambered airfoil in 

his study.    From his study, Stevenson obtained a maximum 1/d of 56 

with a splitter plate of 1. 5 inch chord. 

Rhynard (Ref 4) continued the work of Stevenson by investigating 

the optimum splitter plate position and angle for maximum 1/d. 

Rhynard obtained a maximum 1/d with the splitter plate at the 99 per- 

cent chord position and at a 45 degree angle.     He also found that a 

splitter plate in the 95. 3 percent chord position yielded a maximum 1/d 

when set at a 60 degree angle. 

Present Study 

The objective of this study was to investigate the effect of trail- 

ing edge modifications on the airfoil tested by Stevenson and Rhynard. 

Through changes in the trailing edge contour,   and blowing slot posi- 

tion and angle, the effects of such variables could be observed and 

trends determined for future research.    It is important to see such 

results in order to produce an optimal airfoil for low-speed,  high-lift 

flight. 

— *- - -         i 
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Scope 

The study consisted of several segments.    The first segment 

was the determination of which airfoil modifications should be 

observed and the submission of plans for such modifications.    Con- 

sideration was given to those variables which,  through past studies, 

had shown to be influential in the performance of an airfoil.    There- 

fore, modifications in the aft contour,  blowing slot position,  and 

blowing slot angle were made. 

The second segment of the study was to test the model and its 

modifications in the Air Force Institute of Technology's Five Foot 

Wind Tunnel.    The tests were run at a Reynolds number of 7.41 x 

10   and at a range of momentum coefficients from 0. 0 to 0. 045.    The 

tests were conducted with a 1. 5 inch splitter plate and through a 

range of geometric angles of attack from -6 to +6 degrees.    The split. 

ter plate was located at the 99 percent chord position at a 45 degree 

anglt. 

The final segment of the study was a flow visualization study 

through the use of tufts.    The tuft studies were made at a momentum 

coefficient of 0. 03 for the various angles of attack. 
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II.    Description of Apparatus 

Wind Tunnel 

The wind tunnel tests were conducted in the Air Force Institute 

of Technology's Five Foot Wind Tunnel.    It is an open return,  closed 

test section wind tunnel with a maximum speed of 250 miles per hour 

empty.    A two-dimensional test section was simulated by the instal- 

lation of two wooden side boards resulting in a 60 inch by 30 inch 

tunnel cross section.    Two-dimensional flow characteristics were 

enhanced by the attachment of circular,  beveled endplates to each end 

of the airfoil.    The secondary air source was obtained from a separate 

compressed air supply. 

Airfoil 

The experimental airfoil,   shown in Fig.   1, was a 20 percent 

thick, five percent cambered,  elliptical airfoil,   symmetrical about 

the front and rear.     The model,   designed for use with interchangeable 

trailing edges,  had a span of 2. 17 ft and a chord of 1. 67 ft.    There 

were 48 static pressure taps distributed along the upper and lower 

surfaces of the airfoil. 

The secondary air was brought into the airfoil through a copper 

pipe which directed the air to a fiberglass plenum chamber.    The 

chamber was of diverging-converging cross section,  and extended 

along the entire span of the airfoil.    The 0.02 inch blowing slot 

 . . i  
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represented the minimum area to which the chamber converged.    The 

•lot provided blowing air to the upper rear surface of the airfoil. 

Additional information concerning the airfoil design can be found in 

Stevenson's report (Ref 5:11). 

Airfoil Modifications 

Previous studies had shown thpt the trailing edge contour, the 

location of the blowing slot, and the angle at which the air entered the 

flow were important variables when dealing with high lift devices.    It 

was feasible to modify the original airfoil in all three of these areas. 

The modifications yielded eight different configurations which were 

combinations of original and new design features. 

The blowing slot location of the original airfoil was the 96 per- 

cent chord position.    Adequate results were previously obtained at 

this location,  however, it was desired to investigate the effect of a 

movement of the slot.    Consequently,  the slot location was moved to 

the 97 percent chord position on four of the eight configurations.    The 

choice in moving the slot rearward was arbitrary,  but did provide an 

opportunity to investigate the effect of the adverse pressure gradient 

should it exist in that area. 

The airfoil used by Rhynard was designed with a blowing angle of 

approximately 5 deg. from the horizontal.    Through the use of a stop 

between the upper and lower slot edges,   see Fig.   2, an angle of 

approximately -33 deg. was obtained.    This allowed the air to 
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enter more tangential to the surface than in the original case.    This 

angle was used on four configurations. 

Previous studies had shown that the shape of the trailing edge 

greatly affected lift and drag values for circulation controlled air- 

foils (Ref Z).    In order to investigate this,  four of the configurations 

employed a rounded trailing edge (r = 0. 95 inches) as opposed to the 

original elliptical design.    The 0.95 inch radius was chosen so as not 

to change the overall chord length of the model. 

For comparison purposes, one configuration was designed with 

all of the original features, and one configuration included all of the 

new features.    The remaining six configurations were combinations 

and can be found in Table 1. 

Each of the configurations was grooved for use with a splitter 

plate as described by Rhynard.   Additionally,  the same 1. 5 incn 

splitter plate was used for all tests (Ref 4:5).    The splitter plate was 

located at the 99 percent chord position at a 45 degree angle.    In the 

remaining discussion,  this position will be referred to as the B posi- 

tion and the configurations will be referred to by the numbers one 

through eight as they appear in Table 1. 

Pitot Tube Apparatus 

The pitot tube apparatus was used to measure the spanwise 

pressure distribution along the blowing slot in order to determine 

flow uniformity.    The apparatus was the same as described by 
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Rhynard (Ref 4:6) with the exception of the tube used.    The tangential 

angle of four of the configurations required that the two inch tube be 

bent so as to point directly into the slot at each spanwise point.    The 

diameter of the tube was 0. 02 inches.    The other four configurations 

employed a straight tube in recording the spanwise pressure readings. 

Flowmeter 

A 0. 5 inch throat diameter venturi tube was used to obtain the 

mass flowrate of the secondary air.    A pressure reading was taken 

from a flange tap at the throat and a tap upstream of the throat.    The 

temperature was measured with a copper-constantan thermocouple 

which was located upstream from the venturi throat. 

Oü Filter 

Rhynard's study indicated that the oil and water contained in the 

secondary air was a heavy iniluence on his results.    Because of this, 

a filtering system,  as shown in Fig.  4, was used to eliminate the oil 

and water.    The filter wi.s located upstream of the venturi and con- 

sisted of a diverging co.^i, a cylindrical settling chamber,  and a con- 

verging cone.    The initial cone diverged at a half angle of seven 

degrees in order to slow the flow without causing separation.    The 

flow was slowed,  allowing the oil and water to settle in the chamber 

before the air passed through a filter which was placed between the 

settling chamber and the converging cone. 

Ml II " -^——— -.  ~-~~*.*—:  
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Wake Survey Rake 

A total head wake survey rake was used to measure the 

momentum deficit of the airfoil wake.    The rake consisted of two 

static pressure tubes and % total head tubes.    The tubes were spaced 

0.25 inches apart and were 0. 0625 inches in diameter.    The rake was 

located 1.85 chord lengths behind the airfoil.    The complete rake 

assembly spanned the entire test section from top to bottom with the 

rake itself adjusted as close to the tunnel floor as possible. 

Manometers 

The wake survey rake was connected to a 100 tube,   red oil 

manometer bank of which 98 tubes were utilized.    In order to obtain 

more accurate readings, the manometer bank was inclined 30 degrees 

from the vertical.    Fifty tubes of a vertical alcohol manometer bank 

were utilized to measure the static pressures along the surface of the 

airfoil, and the free stream and test section dynamic pressures.    The 

total pressure in the plenum chamber was measured on three tubes of 

a six tube,   50 inch mercury manometer board.    Finally,  two 60 inch 

mercury manometers were used to measure the pressures across the 

venturi tube. 

-■  ■       —        ' --■ -- _.    . -_.-_ 
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III.    Experimental Procedures 

Following installation of the equipment,  the airfoil was cali- 

brated for angle of attack.    After the calibration,  the secondary air 

system and oil filter were checked for leaks      Finally,  the equipment 

used for measurements was checked for proper operation.    The test- 

ing began with the attachment of an endpiece to the airfoil.    The 

splitter plate was then assembled onto the airfoil.    As the tunnel was 

brought to speed,   74 feet per second, a predetermined venturi pres- 

sure was set.    Due to a time lag between the tunnel and the manom- 

eters,   it was necessary to allow sufficient time for the manometers 

to adjust to tunnel conditions.    After this,   the geometric angle of 

attack was varied from -6 degrees to +6 degrees.    The sequence 

commenced at 0 degrees and proceeded in order to -6 degrees to +6 

degrees at two degree intervals.    A final reading was taken at 0 

degrees in order to check repeatability of data. 

At each of the angles of attack, the manometer banks wei 

photographed and the plenum chamber total pressure and venturi 

pressures recorded.    Once the angle of attack sequence was com- 

pleted,  the blowing rate via the venturi pressures was changed and 

the angle of attack sequence was repeated.    Once the procedure was 

completed for four blowing rates,   the configuration was changed by 

attaching a new endpiece.    This entire procedure was repeated until 

all eight configurations had been tested.    Finally,   re-tests were made 

»mm, 
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to check for accuracy and spanwise pressure distributions were made 

for each configuration.    The filters in the secondary air system were 

changed after every four runs.    In addition, a limited tuft study was 

performed on each configuration to check for separation and two- 

dimensionality of flow. 

10 
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IV.    Data Reduction 

Section Lift Coefficient 

The section lift coefficient,  Cj,   was calculated according to the 

following equation: 

Cj = Cn cos ag (1) 

In the above equation,   Cn is the section normal force coefficient and 

Og is the geometric angle of attack iRef 4:9).    Cn was found by 

numerical integration of the pressure coefficients around the airfoil. 

The Hewlett-Packard 9100A Calculator and 9107A Digitizer employed 

the trapezoidal rule in performing the integration.    The integration 

was performed according to the equation 

Cns/   «Si   -Su'0 (l) ,2) 

o ^ ' 

where CL»    and C_    are the pressure coefficients on the lower and 

upper surfaces respectively,  and I —I is the chordwise distance along 

the airfoil (Ref 4:9). 

Momentum Coefficient 

The amount of blowing applied to a circulation controlled airfoil 

is represented by the momentum coefficient,  C».    The momentum 

coefficient was calculated by the following equation: 

11 
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€„ = m V. 
(3) 

In this equation, rn is the mass flowrate of blowing air per utw span, 

V; la the velocity of the air at the blowing slot, q is the free stream 

dynamic pressure,  and c is the airfoil chord length (Ref 4:V>. 

Section Total Drag  Coefficient 

The section profile drag coefficient,   Cj   ,  was calculated from 

the equation 

i/W^t)..^ (4) 

where q and q    are  the dynamic pressures in the wake and free 

stream respectively,  and dy is the incremental distance between tubes 

on the wake survey rake.    In the second term,  rfi is the mass flowratc, 

V0 is the free stream velocity,   and c is the airfoil chord length 

(Ref 4:10).     The integral term of Eq (4) was found by integration on the 

Hewlett-Packard calculator and digitizer. 

The section total drag coefficient was calculated by the equation 

Cdt = Cd0 
+ C/i (5) 

where Cj     is the section profile coefficient and C^ is the momentum 

coefficient (Ref 4:10).    The second terms of Eqs (4) and (5) are 

included for the purpose of comparing a circulation controlled airfoil 

12 
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with an unblown airfoil .    When blowing is applied,   the momentum 

theory requires that these terms be added to the section profile drag 

because they decrease the momentum deficit measured by the wake 

survey rake.    The second term of Eq (4) represents the intake penalty 

coefficient which would be necessary to obtain air for blowing.    The 

actual drag of the airfoil used in this study would not Include this 

term,  however,   it is necessary to include it in order to compare this 

airfoil with unblown airfoils.    The second term of Eq (5)  is the 

momentum coefficient and must be added because the blowing results 

in a decrease in the momentum deficit and,  consequently,   the drag 

measured is not the actual drag of the airfoil.    This term is also 

necessary in that it represents momentum which originates inside the 

model or outside the system as is the case with a secondary air 

source of the sort used in this study. 

A quick summary shows that the second terms of Eqs (4) and (5) 

are necessary to obtain a true measure of the momentum deficit,  and 

to compare drag results with unblown airfoils. 

Lift-to-Drag Ratio 

The lift-to-drag ratio,  1/d,   is the ratio of the secfon lift 

coefficient to the section total drag coefficient.    It was calculated 

according to the following equation: 

1/d = Cj/Cjj (6) 

13 
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Wind Tunnel Corrections 

Standard two-dimensional solid and wake blocking corrections 

were applied to C^,  Cjj , q    and Re.    Additionally,  a streamline 

curvature correction was applied to Cj. 

14 
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V.  Results and Discussion 

General Observations 

Through the use of the oil filtering system,  the adverse effect 

of the buildup of oil and water was eliminated.    Without the effect of 

oil,  it was possible to observe the separation tendencies of the 

various configurations.    Rhynard's study indicated that separation 

often occurred at +4 to +6 degrees angle of attack for blowing rates 

less than 0. 05 (Ref 4:13).   The blowing rates for the present study 

were all less than 0.05 and allowed an investigation of this occur- 

rence.    This study indicated that separation occurred from +1 to +5 

degrees angle of attack.    The effect of angle of attack on C ,  C^,  and 

1/d can be seen in detail in dejonckheere's report (Ref 1). 

Due to problems in design, the 1-B configuration's slot width 

varied as blowing was applied.    With an increase in C^, the slot 

width increased and consequently,  the results for 1-B do not follow the 

trends set by the other configurations.    The effect of this slot width 

variation can be seen in Figs.  5 through 27. 

The spanwise pressure surveys indicated that the flow from the 

slot was essentially uniform on the various endpieces.    However, the 

flow for configuration 2-3 was not uniform.    The data for this config- 

uration is presented in order to show the effect of the non-uniform 

flow on the lift-to-drag ratio.    The pressure surveys of the other 

endpieces indicated that the flow was uniform from endplate to 
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endplate.    At the higher blowing rates,   some flow variation was noted 

near the endplate. 

The tuft study revealed that some vorticity was present near the 

endplates.    This showed that complete two-dimensional flow was not 

achieved.    This study also indicated that the flow was essentially two- 

dimensional across the mid-span or the region in which measurements 

were made.    The study also showed that flow attachment increased with 

blowing,  and that separation occurred at the higher angles of attack. 

Lift Results 

The lift results are presented in Figs.  5 through 11.    All eight 

configurations are shown in each figure in order to obtain trends for 

the various configurations.   The section lift coefficient increased as 

the momentum coefficient increased.    The maximum values for C} 

increased as the angle of attack increased toward separation.    Com- 

parison of the figures revealed that the maximum lift coefficients 

were less than 2.0 at -6 degrees angle of attack,  that they had risen 

to about 2. 5 at 0 degrees angle of attack,  and reached their peak at 

+2 to +4 degrees angle of attack.    In conjunction with this.  Figs.   9 

through 11 show the effect of separation on the section lift coefficient. 

The values at CM = 0.0 were close,  but when blowing was applied, 

several differences were noted.    As shown in Figs.  5 through 9,  all 

endpieces with new design features yielded higher section lift coef- 

ficient than the original design.    However,  some values for the 1-B 
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configuration were higher for C^'s near 0. 04 and for +6 degrees 

angle of attack.    These exceptions were attributed to separation and 

to l-B's variation in slot width as blowing was rpplied. 

Direct comparisons of the effects of modifications were not 

possible due to the closeness of the results.    In many cases, the 

difference in results for various configurations was withir experi- 

mental error and thereby prevented am accurate evaluation of the 

configurations.    Therefore, the modifications had to be reviewed in 

terms of trends.    One definite trend which developed was that config- 

uration 4-B yielded the highest section lift coefficients for this study. 

This configuration employed the tangential blowing angle,  and the 

circular contour with the slot located at the 96 percent chord. 

Fig.   10 shows that 4-b achieved a maximum lift coefficient of 2. 68 at 

a momentum coefficient of 0. 043 and +4 degrees angle of attack.    The 

3-B and 5-B configurations achieved relatively high section lift coef- 

ficients at the lower blowing rates but tended to reach their peak at 

Cn = 0.04.    This was attributed to the combination of the slot position 

and aft contour on each of these configurations. 

Figure 6 shows that the 6-B, 7-B,  and 8-B configurations 

obtained lift coefficients that were lower tnan the 4-B configuration. 

Since these configurations were combinations of at least two modifi- 

cations,  it had been anticipated that they would yield section lift 

coefficients comparable to 4-B.    These configurations employed a 97 
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percent chord slot position,  and their inability to achieve higher lift 

coefficients was attributed to the slot being in the adverse pressure 

gradient and unable to provide the boundary layer control necessary 

for high section lift coefficients.    It also indi'.ated that the modifica- 

tions might not have been mutually benefitting when in combination. 

The 2-B endpiece is not discussed due to non-uniformity of 

flow.    The results are presented in the figures for observation. 

The effectiveness of the contour change and angle change have 

not been discussed due to relatively small differences in the results 

for configurations employing these modifications.    However,  4-B 

employed both of these modifications and indicated that the contour 

and angle change were effective when in combination. 

In summarizing the lift results,  it is important to note that the 

results for all the configurations were close and made it necessary to 

look at the effects of the modifications in terms of trends.    Figs.   5 

through 9 reveal th;.t the curves are close and that a quantitative and 

qualitative comparison between endpieces was impractical.    However, 

4-B was generally superior and yielded the highest lift coefficients. 

The other configurations which figured to yield high lift coefficients 

were affected by the slot position and adverse pressure gradient. 

The modifications did, however,  increase the lift coefficients over 

the original design. 

sj 
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Drag Results 

The graphs of drag coefficient versus momentum coefficient, 

shown in Figs.   12 through 20,  represent the drag results.    The data 

reduction methods used to determine drag were very sensitive and 

provided considerably more experimental error than is normal.    This 

affected the ability to accurately evaluate the effects of the modifica- 

tions and forced an evaluation of trends rather than specifics.    The 

figures show that,  in most cases, the configurations with modifica- 

tions were effective in reducing the drag as compared to the original 

airfoil.    The figures also show that the total drag increased as the 

momentum coefficient increased.    This was caused by the increase in 

Cp.   The profile drag coefficient,  Cj  , actually decreased with blowing 

as shown in Figs.   19 and 20.    Figs.   16 through 18 show the effects of 

separation on drag,  and that different configurations separated at 

different angles of attack. 

Figs.   13 through 15 reveal that the 4-B configuration yielded 

the lowest drag at zero blowing and for the very low blowing rates. 

At moderate to high rates of blowing, the 3-B configuration main- 

tained lower drag levels while 4-B increased to higher values.    The 

rmly difference between 3-B and 4-B was that 4-B employed the 

tangential angle while 3-B employed the original angle.    This indicated 

that the tangential angle was of little benefit in this case.    An inspec- 

tion of the drag values for 6-B showed that the new angle,  in combi- 

nation with the elliptical contour, was effective in reducing drag as 
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compared to other configurations employing the 97 percent chord slot 

position.    Some of this reduction in drag is attributed to the elliptical 

contour which,  through previous studies,  yielded lower drag values 

than a circular contour.    This result, coupled with the observations 

made on 3-B and 4-B,  indicated that the new angle might have had 

some effect in drag reduction,  but the results did not provide ample 

evidence to accurately determine the effect of the angle. 

The elliptical contour yielded its best results when used in 

combination with the 97 percent chord slot position as evidenced by 

a comparison of 5-B and 6-B.    The latter had,   in general, lower drag 

values than did 5-B.    Additionally,  the best results obtained with a 

96 percent chord slot location were with 3-B and 4-B which employed 

the circular contour. 

Lift-to-Drag Results 

The lift-to-drag results are presented in Figs.   21 through 27. 

Based on its ability to maintain low values for drag and fairly high 

values for lift,  3-B consistently yielded the best 1/d results, as 

shown in Figs.   22 through 24.    This configuration obtained an 1/d of 

46.41 which was the maximum for this study.    7-B and 6-B yielded 

the second and third highest values for 1/d respectively.    Of all eight 

configurations,  the 3-B,   4-B, and 6-B configurations were the most 

consistent in obtaining high 1/d values.    This was true for zero 

degrees and negative angles of attack.    Due to separation effects, 

20 

■M 



GAE/AE/75D-16 

7-B and 8-B obtained the highest 1/d values at +2 degrees angle of 

attack while the results at +4 and +6 degrees angle of attack are 

inconclusive. 

The effect of blowing was seen in the results for 4-B and 6-B. 

The figures show that 4-B yielded the highest 1/d values at CM = 0.0, 

but did not increase as rapidly as 3-B when blowing was applied. 

In addition, 6-B consistently obtained high values for 1/d at moderate 

blowing rates,  but rapidly decreased as blowing continued to increase. 

In conjunction with this, it was found that seven configurations 

obtained their maximum 1/d values at 0 to +2 degrees angle o: attack 

and at blowing rates of 0.018 to 0.03.   Higher blower rates resulted 

in a decrease in 1/d. 

Trends which evolved from these observations showed that the 

circular contour was effective in increasing 1/d when used with the 

96 percent chord slot position.    This is seen in the performance of 

configurations 3-B and 4-B.    This also indicated that the new slot 

angle had little effect on the 1/d values.    In the case of configuration 

6-B, the new slot angle seemed effective in producing high 1/d values. 

This is attributed to the ability of the new angle to help overcome the 

effects of the adverse pressure gradient.    By comparison with 8-B, 

it was found that this angle was most beneficial when used with the 

elliptical contour.    This seemed to be the only case where the 97 per- 

cent chord slot position was beneficial. 

21 
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VI.    Conclusions 

A two-dimensional wind tunnel study to determine the effects of 

trailing edge modifications on the lift-to-drag ratio of a circulation 

controlled airfoil resulted in the following conclusions. 

1. The section lift coefficient is a maximum when in use with 

a 96 percent chord slot position and a circular aft contour. 

2. The section toted drag coefficient is a minimum when the 

circular contour is combined with the 96 percent chord 

slot position and when the elliptical contour is combined 

with the 97 percent chord position. 

3. The section lift-to-drag ratio was a maximum for angles 

of attack near zero degrees. 

4. The section lift-to-drag ratio is a maximum for all config- 

urations when the momentum coefficient is between 0. 018 

and 0.03. 

5. Airfoils employing the 96 percent chord slot position, 

yielded a maximum section lift-to-drag ratio when in 

combination with the circular contour. 

6. Airfoils employing the 97 percent chord slot position, 

yielded a maximum section lift-to-drag ratio when in 

combination with the elliptical contour and the tangential 

angle. 

22 
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VII.    Recommendations 

It is recommended that further wind tunnel tests of circulation 

controlled airfoils include: 

1. A lengthening of the wake survey rake so as to cover a 

greater section of the tunnel and result in more accurate 

drag measurements. 

2. A determination of a less sensitive method for reducing 

drag pressure data. 

3. A detailed investigation of changes in slot position by means 

of forward and aft changes from the 96 percent chord posi- 

tion. 

4. A determination of the effect of slot width on the lift-to- 

drag ratio. 

23 
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Table I 

Airfoil Configurations 

■■'      ■• — 

Configuration Contour Slot Position Slot Angle     \ 

1-B* Elliptical 96% c 5deg        I 

2-B** Elliptical 96% c -33 deg        | 

3-B Circular 96% c 5 deg        i 

j           4-B Circular 96% c -33 deg        ] 

5-B Elliptical 97% c 5 deg        j 

6.B Elliptical 97% c -33 deg        | 

7-B Circular 97% c 5 deg 

8-B Circular 97% c -33 deg 

Splitter Plate: 

Length - 1. 5 in. 
Deflection Angle - 45° 
Location - 99% chord 

*Defective due to slot width variation 
♦* Defective due to non-uniformity of flow at the slot. 
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Appendix B 

Data 
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